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Image Theory for Reflected TE/TM
Wave in Waveguide

Perttu P. Puska and Ismo V. Lindell,Fellow, IEEE

Abstract— The image principle is extended to the
time–harmonic problem of TE/TM wave propagation and
reflection in a waveguide. The fictitious image generating the
reflected field is derived with the aid of Heaviside operational
calculus and a transmission-line model of the waveguide. The
operational calculus reveals that the image of a point-like source
in front of the waveguide discontinuity is another point-like
source in the mirror-image position and a line source extending
from the mirror-image position to infinity. The image derived
with operational calculus turns out to be independent of the
waveguide’s transverse geometry.

Index Terms—Electromagnetic analysis, electromagnetic reflec-
tion, electromagnetic scattering, transmission-line discontinuities,
transmission-line theory.

I. INTRODUCTION

PROBLEMS concerning TE or TM wave reflection in a
waveguide are usually tackled with methods that are of

approximate nature—the waveguide is somehow discretized
and the fields are solved numerically, Huygens sources are
used on the interface, etc. On the other hand, the image theory
gives exact solutions, provided that the images can be found.
The lack of a suitable method for finding the images is the
reason that the image theory has not been widely used in
waveguide problems. However, this paper proposes an easy
way to derive the images, with the use of an old, but in
its directness, attractive method—the Heaviside operational
calculus [1], [2]. With only a few manipulation steps, the
calculus gives an operational form of the image expression
that can be evaluated in some cases even in a closed form.
The one case where the closed-form expression is possible
is the problem of the TE/TM wave reflection in a waveguide
with an abrupt change in the waveguide longitudinal parameter
profile. Before applying Heaviside operational calculus to this
problem we must, in one way or another, cast the waveguide
geometry in one-dimensional (1-D) or-dependent form, so
that the reflection operators acting on-dependent generalized
functions can be applied. With transmission-line formalism
given in the Appendix, we can reduce a waveguide problem
into a 1-D problem—and that is how we start in Section II. We
then derive the images in Section III and finally, in Section IV,
consider an example in rectangular geometry.

II. SERIES EXPANSIONS FOR THEFIELD AND THE SOURCE

Let us first find the modal representation of the scalar field
in the waveguide with cross sectionand boundary . The
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field is a solution of the inhomogenous Helmholtz equation

(1)

and, furthermore, satisfies either Neumann- or Dirichlet-type
boundary conditions on . We assume that and source
can be written as

(2)

where ’s are orthonormal in the sense

(3)

and satisfy the transverse eigenvalue equation

(4)

Substituting (2) into (1) gives

(5)

where denotes the double sum of (2). Operating (5) from
left with and using (3) and (4) finally yields

(6)

where . The assumption of the separability of
and enables us to reduce the problem to a transmission-line

one, where plays a role of mode voltage or current wave
and generally represents a combined voltage and current
source for mode . With the waveguide reflection problem
in the mind, we let (6) describe the mode voltage/current

due to source located in the region ,
and we then let be incident on interface at
after which the waveguide parameters abruptly change. The
change in the parameters naturally gives rise to reflected mode
voltage/current wave (as well as alters the incident wave
traveling to the negative -direction). The reflected modal
wave can be thought of as being produced by sourcein the
region if the interface is removed and the transmission
line is extended to the region . Now the reflected-
mode voltage/current is given by

(7)

with the usual solution that we may try to write in the
following form:

(8)
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where, in fact, and, thus,
the substitution of (8) into (7) gives

(9)

However, the right-hand side (RHS) of (9) is nothing else but

(10)

because of (6)

III. I MAGE SOURCE THROUGH

HEAVISIDE OPERATIONAL CALCULUS

A. Identification of Propagation Coefficients
with Differential Operators

The RHS of (10) givesan operational formof the reflection
image source as follows:

(11)

The termoperationalcould be understood by considering the
exp-dependence of the solutions of (6) or (7), which allows
us to identify

(12)

and by supposing that the reflection coefficient of the mode
can be expanded as a power series of . The operational

form of the reflection coefficient is then a pseudo-differential
operator , where every has been replaced by .
As was not a function of the indices , but rather
of , the resulting does not depend on the indices

or, in other words, are similar in form for all
modes and, consequently, all the modes have the same
operational expression for the reflection coefficient.

Thus, if the series expansion of is
, the image has the expression

(13)

The image source for the total reflected field is
then

(14)

where stands for the reflection dyadic . Equation
(14) actually claims that the image is independent of the
waveguide transverse geometry since the guide geometry
parameters do not appear in the operational expression. This
rather surprising result is mathematically due to the fact that
we could pull the reflection operator out of the sum in (14), but
the physical reason for this can be seen if we apply the image

Fig. 1. Differential part of a`p transmission line modeling TE wave
propagation in the waveguide.

principle also in the transverse plane. The example given in
Section IV discusses the case in more detail.

Now the incident source is usually highly localized
and, thereby, the modal sources are of distributive nature.
Here, the Heaviside operational calculus steps in (as the very
essence of the Heaviside method is to let differential operators
act on distributions [3, Ch. 1]). The fundamental identity of
the Heaviside calculus is

(15)

whence almost all other identities can be derived. Here,
is the Heaviside unit step function. The calculus allows us
to directly determine the image sources without turning to the
standard integral transform methods which awkwardly lose the
physical setting by forcing us to work in transform space. In
the next section, the physical setting we turn our attention to is
the case of the waveguide TE- and TM-mode reflection, which
can be reformulated to resemble (2)–(10). The reformulation
is explained in the Appendix, which recapitulates the results
of the classical references [4, Ch. 1] and [5, Ch. 8]. An
eigenfunction expansion of the axial magnetic or electric field
leads to the concept of the mode voltage and current

that satisfy the first-order transmission-line equations
(70)–(73) given in the Appendix.

B. Properties of the Transmission Line

For a moment, let us suppress the indices from the
mode voltage/current and consider only the properties of
the transmission-line model for the waveguide TE/TM wave
propagation. The model differs from the ordinary lossless
transmission-line model by introducing either a parallel induc-
tance element (TE) (Fig. 1) or a series capacitance element

(TM) (Fig. 2) to the differential section of the ordinary
line [5]. The dimensions of these new elements are [H/m] and
[F/m], respectively, and are not multiplied by a unit length
as the normal distributed transmission-line parameters[H/m]
or [F/m]. The transmission-line equations are then in a TE
case as follows:

(16)

(17)

and in a TM case:

(18)

(19)
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Fig. 2. Differential part of acs transmission line modeling TM wave
propagation in the waveguide.

assuming a time variance. The source terms ,
represent a distributed series voltage source and a distributed
parallel current source. The propagation coefficientsare now

TE

TM (20)

and corresponding characteristic admittances/impedances

TE

TM (21)

It is seen that there is a relation betweenand :

TE TM (22)

The inhomogenous Helmholtz equations for the and
are found from (16) to (19) as follows:

(23)

(24)

C. and Generated by Sources

The solution of (23) or (24) can be written as a convolution
of the source with Green function, and after partial integration
the convolution integrals become

(25)

(26)

We rewrite (25) and (26) to reveal that or actually
describe two wavefronts traveling to opposite directions:

(27)

(28)

Fig. 3. Image principle iǹp line. The upper section depicts the situation of
the original problem with two different̀p transmission lines joined atz = 0

and the source atz = z0: In the lower section, the boundary is removed
and the left-hand transmission line of the upper section is replaced by a line
having the same parameters as the right-hand transmission line. However, the
fields in the regionz > 0 do not change because we have placed images in the
left half-space. The image source starts fromz = �z0 and extends to�1.

D. Two Transmission Lines

Having established the parameters of the transmission line
corresponding to the TE/TM mode propagation, we may then
apply operational calculus to the problem described in the
Section II—the case of mode voltage or current wave reflec-
tion and transmission from the junction of two transmission
lines. The full problem splits into two parts: the TE part
corresponding to the case where two lines with different
characteristics are connected at and the TM part, where
two lines are similarly joined together. In both cases, the
line with impedance is located in the region and
the line with in . The source is a sum of current

and voltage
generators with infinite and zero internal impedances, respec-
tively. The upper part of the Fig. 3 describes the situation.
A current–voltage source just described is chosen because it
is of the most elementary form, producing only left-going
waves traveling toward the interface, provided that we set

. Equations (27) and (28) then give

(29)

1) TE Modes: The reflection and transmission coefficients
in the line corresponding to the TE case read

(30)

(31)

where we have used (22). In an ordinary transmission-line
problem, and would have been independent of propaga-
tion coefficients and, consequently, the analysis would lead to
almost trivial image sources, e.g., the reflected voltage image
would simply be a mirror image of the original one. However,
the situation depicted in (30) and (31) leads to distributed
image sources as will be seen shortly. Equations (30) and (31)
can be written in a form involving only either one of the
propagation coefficient by requiring the transverse component
of the wavenumber vector to be continuous:

(32)
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where . Hence, (30) can be written in
the form

(33)

Before proceeding, we note that (23) and (24) for the voltage
and current are similar in form and, consequently, we only
need to analyze the case of the reflected voltage wave—the
current wave may be inferred by suitable changes of the
variables. In order for the reflected wave to appear, the incident
wave is needed:

(34)

and we wish to find the image sourceof the reflected waves
given by

(35)

The reflected voltage can be given in the operational form

(36)

(37)

Substituting (37) in (35) yields

(38)

where the last expression is the operational form of the image,
which can be written as

In operating on the source termwith we need the formula

(39)

where [2], [6, pp. 238–239]

(40)

and denotes the Heaviside unit step function (see Fig. 4).
A word of caution concerning the substitution of the in
radicals as is in place here: we must choose
the sign of the radical so that the result makes sense physically.
Unfortunately, we have no way of knowing the sign other
than by examining which one makes more sense physically.
We can, for instance, examine what happens when .
In this case, the inspection reveals that

. The ambiguity arises from the fact that there
is no unique image for the reflected field even though the

Fig. 4. Function�(�; z) forming the continuous part of the RHS of (39)
with different values of�.

reflected field itself must have a unique solution in the region
.

Thus, the expression for the voltage image is

(41)

where

(42)

(43)

From (41) to (43), it is seen that the reflection images are
generally combined of poles and continuous line sources,
where the line sources start from and extend to

(see Fig. 3).
The complete treatment of the problem requires a transmis-

sion image too, with the image now being found through the
use of the operator (31). Applying the property (32) yields for
the transmission operator

We assumed that the reflected voltage can be given by (35).
Likewise, we assume that the transmitted voltage is a solution
of

(44)

To simplify the manipulations appearing in the steps to follow
we introduce a “modified” incident wave:

where , and which has a solution

(45)

Requiring to be continuous across the interface gives



PUSKA et al.: IMAGE THEORY FOR REFLECTED TE/TM WAVE IN WAVEGUIDE 59

which combined with (44) and (45) gives

(46)

where we have used the Heaviside shifting property
. We note that (44) and (46) should

describe the same source. The relation (46) needs only a
suitable replacement for ’s. The apparent choice for the
replacement is because the transmitted wave is going
left. Therefore,

and

2) TM Modes: We may instantly write down solutions cor-
responding to the line image problem by using the solutions
of the TE problem if the following dualities between TE and
TM transmission lines are recognized:

E. Waveguide Images

The images we have considered earlier were derived with
respect to general properties of the transmission line. If they
represent modal images , the entire image for the reflected

field is then a sum of these modal TE images:

(47)

Fig. 5. Two waveguides joined atz = 0. The waveguides are filled with
materials having different permittivities and permeabilities.

and similarly, using the dualities given in (Section III-D.2),
we get the image for :

(48)

Superscripts and in (47) and (48) refer to TE and TM
modes, respectively. Looking at the final operational relations
on the RHS of (47) and (48), we note that the eigenfunction
expansions do not appear in the expressions even though we
did use ’s in the intermediate steps. The disappearance of
the eigenfunctions can be expected since the images should be
independent of the choice of the eigenfunction basis. However,
even with this property, the eigenfunctions of the empty
waveguide are a necessary evil, for without them we are not
able to model the waveguide as a transmission line. Therefore,
the image theory of this paper cannot be applied to the
waveguide problem where the cross section is so complicated
that the eigenfunctions are not known.

IV. JUNCTION OF RECTANGULAR WAVEGUIDES

As an example, we now consider a situation where a
small dipole is placed in front of a junction of rectangular
waveguides (Fig. 5). The source is

(49)

and, hence, for TE modes from (64) in the Appendix we get

(50)

Unlike the sources considered in the earlier sections, the dipole
produces both left- and right-going waves of which the former
gives rise to the reflection image (47)

(51)
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Fig. 6. The original and the image source (line image part only shown).

The source (see Fig. 6) of the-component of the reflected
-field is then a combination of: 1) a point source located

at , , and is otherwise similar to the
original source, but the amplitude is modified by the factor

and 2) a line source starting from ,
, and extending to the infinity in the negative

-direction. The line source has an amplitude variation given
by

In the case of the rectangular guide, there is a nice explana-
tion for the independence of (51) of the transverse coordinates

, —we can picture that in addition to the original image
there is an infinite set of images placed in the mirror-image
points in the transverse plane of the guide (Fig. 7). Images in
the transverse plane extend longitudinally to the infinity in a
similar fashion as the original one (51).

V. CONCLUSION

Solving waveguide discontinuity problems such as the one
demonstrated here usually involve the construction of the
Green function for the waveguide. The geometry of the
discontinuity has to be built into the Green function in order
for the Green function to satisfy boundary conditions. Work
required to develop the Green function for the simple example
presented in this paper might be within reasonable limits, but
certainly not for more complicated settings such as scatterers
in the waveguide near the discontinuity. The image-theory
approach needs only an empty waveguide’s Green function,
and the previous problem of forming the Green function
satisfying boundary conditions reduces to the case of finding
the images. Once the images sources are found with the
procedure described in the previous sections, the fields are
immediately obtained by simply taking the convolution of all
sources with the Green function of the empty waveguide.
The practicability of this approach is seen clearly if, for
instance, we are writing a program to calculate fields in
waveguide scattering problems. We need write only one simple
subroutine for the Green function no matter the number and
shape of the scatterers. Now the principal work is to form
the image sources, and here the Heaviside calculus may be
applied. The way Heaviside calculus was used in the previous
sections can be classified as a direct-type formulation of the
general image theory. The other class of general image-theory
formulations can be termed as being of the integral transform
type. An example of the latter category is the exact image
theory (EIT) that used Laplace transform techniques to find
the images [7]. The disadvantage of the EIT was that the

(a) (b)

Fig. 7. (a) Rectangular waveguide’s walls can be removed if infinite number
of image sources similar to the original one are substituted in the (b) transverse
mirror-image positions.

manipulations of integrals of Laplace transforms could be quite
tedious. But, as we have seen in this paper, Heaviside calculus
gives operational expressions for the images immediately and
deals naturally with the distributive nature of the sources. A
particularly attractive feature is that Heaviside calculus leads
to physically sound images in the sense that the images are
combinations of point-like sources that could be called “static,”
existing even when , and line sources that could be
thought of as being “dynamic” additions to the “static” images.
After all, intuition shows that time–harmonic images should
differ from the time-independent ones, yet the images should
bear some resemblance to the images of the static problem.

APPENDIX

TRANSMISSION-LINE MODEL FOR TE/TM MODES

A. Mode Voltages and Currents

In a waveguide TE- or TM-mode propagation case, the
electric and magnetic fields can be conveniently expressed
with scalar transverse eigenfunctionand scalar longitudinal
eigenfunction [5, Ch. 8], and for a single mode’s electric
and magnetic field we have the following relations, where the
double mode indices are suppressed:

(52)

(53)

(54)

(55)

The TM case is dual to the previous one, hence,

(56)

(57)

(58)

Now connecting with or , (52)–(58) appear as

(59)

(60)
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where mode voltages or currents and mode vectors are

(61)

The mode vectors thus expressed are orthogonal and are
assumed to be normalized over the cross-sectional area of
guide.

B. Sources

The relation between transmission-line sources ,
and current or magnetic current remains to be
found. To this end we start with Helmholtz equations for,

:

(62)

(63)

and proceed by taking the-components of the aforementioned
quantities, since it is possible to express TE or TM fields as
functions of longitudinal fields only:

(64)

(65)

Substituting the series expansions

(66)

(67)

(where is the cutoff wavenumber of the mode) in
(64)–(65), multiplying from the left by , and integrating
over the cross section eventually yields

(68)

C. Circuit Components

It is seen from (61) that one may define mode impedances

(69)

Equation (61), combined with (68), finally yield the
transmission-line equations with sources

(70)

(71)

for TE and

(72)

(73)

for TM. Comparing (70) and (71) with (16) and (17), and
(72) and (73) with (18) and (19), one recognizes the following
correspondences:

(74)
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