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Image Theory for Reflected TE/TM
Wave in Waveguide

Perttu P. Puska and Ismo V. Lindelellow, IEEE

Abstract— The image principle is extended to the field f is a solution of the inhomogenous Helmholtz equation
time—harmonic problem of TE/TM wave propagation and 5 . .
reflection in a waveguide. The fictitious image generating the (V2 +E)f(7) = g(7) (1)

reflected field is derived with the aid of Heaviside operational - . .
calculus and a transmission-line model of the waveguide. The and, furthermoref satisfies either Neumann- or Dirichlet-type

operational calculus reveals that the image of a point-like source boundary conditions o@S. We assume thaf and sourcey
in front of the waveguide discontinuity is another point-like can be written as
source in the mirror-image position and a line source extending

o> o>
from the mirror-image position to infinity. The image derived A — ‘ ]
with operational calculus turns out to be independent of the ) Zzwkl(makl(z)

waveguide’s transverse geometry. koot

oo oo
Index Terms—Electromagnetic analysis, electromagnetic reflec- g(7) = Z Z Pri(P)sni(2) (2)
tion, electromagnetic scattering, transmission-line discontinuities, 1

transmission-line theory. .
where’s are orthonormal in the sense

[. INTRODUCTION (B (7) dS = S b 3)
ROBLEMS concerning TE or TM wave reflection in a s
waveguide are usually tackled with methods that are afd satisfy the transverse eigenvalue equation
approximate nature—the waveguide is somehow discretized 2 ) o
and the fields are solved numerically, Huygens sources are (Vi + EigJihua(7) = 0. “)
used on the interface, etc. On the other hand, the image theBpbstituting (2) into (1) gives
gives exact solutions, provided that the images can be found.
The lack of a suitable method for finding the images is the Z(VQ + K2 )i (P)an(z) = Zwki(ﬁ)skl(z) (5)
reason that the image theory has not been widely used in i
waveguide problems. However, this paper proposes an e#8jere>; denotes the double sum of (2). Operating (5) from
way to derive the images, with the use of an old, but ileft with fs dS+.,,, and using (3) and (4) finally yields
its directness, attraptive method—the Heavi_side operational (2 + B2, Vamn(2) = Smn(2) (6)
calculus [1], [2]. With only a few manipulation steps, the
calculus gives an operational form of the image expressivhere/sz,, = k% —k2,,,. The assumption of the separability of
that can be evaluated in some cases even in a closed fofnandg enables us to reduce the problem to a transmission-line
The one case where the closed-form expression is possidie, wherez,,,,, plays a role of mode voltage or current wave
is the problem of the TE/TM wave reflection in a waveguidend s,., generally represents a combined voltage and current
with an abrupt change in the waveguide longitudinal paramegurce for modenn. With the waveguide reflection problem
profile. Before applying Heaviside operational calculus to thi§ the mind, we let (6) describe the mode voltage/current
problem we must, in one way or another, cast the waveguidg,,(z) due to sources;,, (z) located in the regiorn: >0,
geometry in one-dimensional (1-D) aerdependent form, so and we then leta; , (z) be incident on interface at = 0
that the reflection operators acting gilependent generalizedafter which the waveguide parameters abruptly change. The
functions can be applied. With transmission-line formalisf@hange in the parameters naturally gives rise to reflected mode
given in the Appendix, we can reduce a waveguide problevaltage/current wave (as well as alters the incident wave
into a 1-D problem—and that is how we start in Section |l. Weaveling to the negative:-direction). The reflected modal
then derive the images in Section Il and finally, in Section I\Wvave can be thought of as being produced by sosfjgein the
consider an example in rectangular geometry. region z < 0 if the interface is removed and the transmission

line z > 0 is extended to the region< 0. Now the reflected-
Il. SER|ES EXPANSIONS FOR THEFIELD AND THE %URCE mode Vo|tage/current is given by

Let us first find the modal representation of the scalar ffeld 52 2\ r T

. . . . S+ ar (z)=s (2 7

in the waveguide with cross sectighand boundaryS. The (9 4 Binn) o (2) = 8100 (2) %
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where, in factal,,,, (0) exp (—=jBmnz) = a,,(—2) and, thus, {dz
the substitution of (8) into (7) gives PR
Srnn(z) = (aZQ + ﬁran)R(ﬁnln)ainn(_z)
= R(ﬁmn)(ag + ﬁznn)ainn(_z)' (9) cdz p— gp
However, the right-hand side (RHS) of (9) is nothing else but

2 2 3 _
R(Bmn)(0F + Brn) Grn(—=2) = R(Brmn)spn(=2)  (10) Fig. 1. Differential part of af, transmission line modeling TE wave
propagation in the waveguide.
because of (6)

(2 4 B2,)ak(2) = st (2). principle also in the transverse plane. The example given in
Section IV discusses the case in more detalil.
. 1 MAGE SOURCE THROUGH Now the incident sourcg’(5) is usually highly localized
HEeAVISIDE OPERATIONAL CALCULUS and, thGFEby, the modal SOUTCﬂﬁn are of distributive nature.

Here, the Heaviside operational calculus steps in (as the very
essence of the Heaviside method is to let differential operators
act on distributions [3, Ch. 1]). The fundamental identity of
the Heaviside calculus is

A. ldentification of Propagation Coefficients
with Differential Operators

The RHS of (10) givesn operational fornof the reflection vl
image sources’,,,.(z) as follows: d770(2) = ?(—)9(2) (15)
. vV
Sin(2) = Bl Bmn )3 (=72). (11) whence almost all other identities can be derived. Héte)

The termoperationalcould be understood by considering thés the Heaviside unit step function. The calculus allows us

exp-dependence of the solutions of (6) or (7), which allowi directly determine the image sources without turning to the
us to identify standard integral transform methods which awkwardly lose the

g s e physical setting by forcing us to work in transform space. In
Bmne 7" = jO.eTI T (12)  the next section, the physical setting we turn our attention to is

and by supposing that the reflection coefficient of the mo&ge case of the waveguide TE- and TM-mode reflection, which

mn can be expanded as a power serie§,of . The operational can be .reforr_nulated o resgmble_ (2)_(10)'. The reformulation
form of the reflection coefficient is then a pseudo-diﬁerentié? explained in the Appendix, which recapitulates the results

operatorR(jd.), where everys,,,, has been replaced biy.. OT the cla§5|cal references [4, (?h' 1 and. [5, Ch. 5]- _An
AS R(f,) was not a function of the indicesn, but rather eigenfunction expansion of the axial magnetic or electric field

of Bn, the resultingR(jd.) does not depend on the indiceéeads to the copcept of j[he mode volta@,gn(.z) apd curren_t
mn, of, in other words,R(fy.)s are similar in form for al I.»(2) that satisfy the first-order transmission-line equations

modesmn and, consequently, all the modes have the sargeo)_(n) given in the Appendix.
operational expressioR(;j0.) for the reflection coefficient.
Thus, if the series expansion @(Bpn) IS R(Bmn) =

¥ 14 (50.)*, the image has the expression For a moment, let us suppress the indiees from the
mode voltage/current and consider only the properties of

" (2) = R(jo.)st, (—2) = iTk(jaZ)ksi (—2). (13) the transmission-line model for the waveguide TE/TM wave
k

B. Properties of the Transmission Line

S
e e propagation. The model differs from the ordinary lossless

) . NP transmission-line model by introducing either a parallel induc-
The image sourcg”(r) for the total reflected field(7) is  tance element, (TE) (Fig. 1) or a series capacitance element
then ¢s (TM) (Fig. 2) to the differential section of the ordinary

g () = Zwmn(ﬁ)szm(z) line [5]. The d!men3|ons of these new (_alements are [H/m] and

[F/m], respectively, and are not multiplied by a unit length

s i as the normal distributed transmission-line paramet@rim]
=HR(j0.) Zwm"(ﬁ)smn(_z) or ¢ [F/m]. The transmission-line equations are then in a TE

m case as follows:

mn

=R(40.)g"'(C -7 14
o R(30:)g ) B B 8.U(z) + jwll(z) =u(z) (16)
whereC stands for the reflection dyadic— 2. Equation ) )

(14) actually claims that the image is independent of the 9:1(z) + <jwc+ )U(z) =i(2). 17
waveguide transverse geometry since the guide geometr
parameters do not appear in the operational expression. Thi
rather surprising result is mathematically due to the fact that 8.U(2) + <jw£ . 1 )I(z) —u(2) (18)
we could pull the reflection operator out of the sum in (14), but Jwes

the physical reason for this can be seen if we apply the image 9. 1(2) + jwcl(z) =i(z) (29)

Jwl,
in a TM case:
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— cdz

Fig. 2. Differential part of acs transmission line modeling TM wave
propagation in the waveguide.

assuming a“«* time variance. The source termgz), i(z)

represent a distributed series voltage source and a distribq—}1
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Fig. 3. Image principle irf,, line. The upper section depicts the situation of
the original problem with two different,, transmission lines joined at= 0

and the source at = zg. In the lower section, the boundary is removed

Adjthe left-hand transmission line of the upper section is replaced by a line
aving the same parameters as the right-hand transmission line. However, the

parallel current source. The propagation coefficigh&se NOW fieids in the regior: > 0 do not change because we have placed images in the

/3:w,/£<c—w%) (TE)
B=w c<z—w3:68) (TM) (20)

and corresponding characteristic

Q

dmittances/impedances

1 1
Y = Z(c_ w%,) (TE)
1 1
Z=y/-£- T™). 21
- o) aw @)
It is seen that there is a relation betwegrand j3:
wl J5)
Z=— (TE) Z=-— (TM). 22
5 () Z= (™M) (22)

The inhomogenous Helmholtz equations for thgr) andI(z)
are found from (16) to (19) as follows:

Q2U(2) + B*U(z) = 0.u(z) — jBZi(z)
O*1(z) + 1(z) =8.i(z) — jAY u(z).

(23)
(24)

C. U(z) and I(z) Generated by Sources

The solution of (23) or (24) can be written as a convolution
of the source with Green function, and after partial integration

the convolution integrals become
[sen (z — 2 )u(z') + Zi(2)]e 1011 42’

.
(25)

I(z) =4 /_00 [sen (2 — 2")i(2) + Yu(z’)]eﬂﬂlz_z’l d?.
(26)

We rewrite (25) and (26) to reveal th&t(z) or I(z) actually
describe two wavefronts traveling to opposite directions:

U(z) =1eP2 / I () + Zi(2)] d2'

+ %ewz/ eI [—u() + Zi())dz'  (27)
I(z)=1eP2 / i) + Yu()] de’
+1ed% [ eI i) + Yu(2)] de. (28)

left half-space. The image source starts frore —zy and extends te-cc.

D. Two Transmission Lines

Having established the parameters of the transmission line
corresponding to the TE/TM mode propagation, we may then
apply operational calculus to the problem described in the
Section ll—the case of mode voltage or current wave reflec-
tion and transmission from the junction of two transmission
lines. The full problem splits into two parts: the TE part
corresponding to the case where téplines with different
characteristics are connectedzat 0 and the TM part, where
two ¢, lines are similarly joined together. In both cases, the
line with impedanceZ; is located in the regiorr >0 and
the line with Z, in 2 < 0. The source is a sum of current
i'(2) = Ip6(z — 20) and voltage:®(z) = Upé(z — 2p) (20 > 0)
generators with infinite and zero internal impedances, respec-
tively. The upper part of the Fig. 3 describes the situation.
A current-voltage source just described is chosen because it
is of the most elementary form, producing only left-going
waves traveling toward the interface, provided that we set
Iy = —=Uy/Z;. Equations (27) and (28) then give

[—Uo + ZIo)e? ™ 70
[—Io + Y Up)e?rE==0),

Ut (2)

I' (2) (29)

=1
2
=1
2

1) TE Modes: The reflection and transmission coefficients
in the £, line corresponding to the TE case read

_ D=2 _bPi-4f
Zy+ 21 LpL+ L

. 275 . 20531

C Za+Zy b+ 0

where we have used (22). In an ordinary transmission-line
problem, R and7” would have been independent of propaga-
tion coefficients and, consequently, the analysis would lead to
almost trivial image sources, e.g., the reflected voltage image
would simply be a mirror image of the original one. However,
the situation depicted in (30) and (31) leads to distributed
image sources as will be seen shortly. Equations (30) and (31)
can be written in a form involving only either one of the
propagation coefficient by requiring the transverse component
of the wavenumber vector to be continuous:

R (30)

T (31)

B} = p? - B? (32)
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where B2 = w?4,¢; — w?fsco. Hence, (30) can be written in
the form 0,1

U3 — L\ BE — 33)

LBy +4\/B2 - B2 —0,1

Before proceeding, we note that (23) and (24) for the voltage 0,2
and current are similar in form and, consequently, we only )
need to analyze the case of the reflected voltage wave—the —0.3
current wave may be inferred by suitable changes of the ~0,4

variables. In order for the reflected wave to appear, the |nC|dent
wave is needed: Fig. 4. FunctionY(«, z) forming the continuous part of the RHS of (39)

with different values ofa.

R(p) =

(02 + POUL(2) = 0:u'(2) = jP1210'(2) = s'(2)  (34)
reflected field itself must have a unigue solution in the region
and we wish to find the image sourg&of the reflected waves . - 0.

given by Thus, the expression for the voltage image is
(82 + BOUL(2) = 5"(2). (35) s"(2) = 0.u"(2) — §/ 2117 (2) (41)
The reflected voltage can be given in the operational form where
U_’i_(z) :R(Bl)Ui(O)G_Jﬂlz ' (36) U,r( ) ——U0|:i i 6(Z+ZO)+BT<§_27_B(Z+ZO)>
:R(ﬁl) % [_UO + ZIIO]G—g,Bl(z-i—zO) 2+ 41 1
= R(jo.) 3 [-Uo + ZuLole 7+ (37) O(=(z+ m))} (42)
Substituting (37) in (35) yields () = Io[i Jj §(s+ 70) + BT(i _B( +ZO))
‘ . 2 1
s"(2) = R(jO.)(0% + BL)UL(0)e ™7
. ; - 0(—(z+ = . 4
= RGO)(@ + BV () o-teta) @)
= R(j0:)s'(=2) (38)  From (41) to (43), it is seen that the reflection images are

Lo . . enerally combined of poles and continuous line sources,
where the last expression is the operational form of the |ma%q\(/ah y P

which can be written as ere the line sources start from = —z, and extend to
‘ ‘ z = —oo (see Fig. 3).
R(j8.)s'(=2) = R(jO.)(=0.u' (—2) — jP1Z1i (=2)) The complete treatment of the problem requires a transmis-

= R(jO)(=0.Upd(~(2 + 20)) — jP1 %1 sion image too, with the image now being found through the
I8 use of the operator (31). Applying the property (32) yields for
+Lod(=(# + 20))). the transmission operator

In operating on the source tershwith R we need the formula T 205/ 32 + B2
2) = .
ad. — /2 + B2 a—1 62+ L0/ 35 + B?

8(z) = 8(z) + BY(«, Bz)0(z) (39)
ad; + /02 + B? a+l We assumed that the reflected voltage can be given by (35).
where [2], [6, pp. 238-239]

Likewise, we assume that the transmitted voltage is a solution

of
na,z):_afﬁli(g;)"n%z) (40) (2 +AUL() = ') = O’ (2) = i (). (44)
n=1 ~

To simplify the manipulations appearing in the steps to follow
andé(z) denotes the Heaviside unit step function (see Fig. 4ye introduce a “modified” incident wave:
A word of caution concerning the substitution of thé&. in ‘
radicals ag3, = /3% — B2 is in place here: we must choose (97 + 35)U” (2) = 8. U6 (2 — 20) — 2 Z21y6(7 — z0)
the sign of the radical so that the result makes sense physicall¥1

Unfortunately, we have no way of knowing the sign othefnerels = [Z1(51)/Z2(52)l1o, and which has a solution
than by examining which one makes more sense physically. heN 1 I\ B2 (2—20)

We can, for instance, examine what happens WhEFH 4. UZ(z) = 3 (=Uo+ Z2lp)e ' (45)

In this case, the inspection reveals thgf(j0.)? — B2 = RequiringUt () to be continuous across the interface gives

—j\/0% + B2. The ambiguity arises from the fact that there ‘ '
is no unique image for the reflected field even though the U'(z) = T(B2)UL(0)e?P2*
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which combined with (44) and (45) gives

(02 4 BT (B2)(=Up + Zy1y)e 170 ¢ih27

= T(p)e 90 1550 (82 4 B3) [~ U+ Za Iy (B)] ! =)

= T(fBo)e 170 122000 U8 (2 — 20) — j o Za L} (Ba)6(z — 20)]

= T(pa)e VBB 200.Ugi (2) — ja Zall (B ()] (46)
where we have used the Heaviside shifting property
%= 8(2 — 29) = §(z). We note that (44) and (46) should
describe the same soureé The relation (46) needs onIy aFlg 5. Two waveguides joined at = 0. The waveguides are filled with
suitable replacement fofi;’s. The apparent choice for thematerials having different permittivities and permeabilities.

replacement is-;jd. because the transmitted wave is going
left. Therefore,

. and similarly, using the dualities given in (Section IlI-D.2),
u'(2) we get the image fol&.:

= T( Ja )UOG ] 82+B240 6( ) ’I rn rnn T,
r) = Ja ZZ rnn ﬁ)snln( “)
25\/07 =B _ jmpe.
=U, = A °4(2)
(9. + oy =B = —R(j0.)g"™(C - 7). (48)
= < 5 ) L %QE Jo(§By/ 22 — 22)0(z — 20) Superscriptse apdm in (4?) and (48) refer to TE and TM
%0 1+ £2 modes, respectively. Looking at the final operational relations

441 /45 i <£1 - £2>2<z - ;:0)2 on the RHS of (47) and (48), we note that the eigenfunction

g2 -1 =\l 44 Z+ 20 egpansions dq not appear in. the expressiong even though we
- did usei,,,,,’s in the intermediate steps. The disappearance of
- Jon (i By /42 _ 22)0(z — 20)} the eigenfunctions can be expected since the images should be
independent of the choice of the eigenfunction basis. However,
and even with this property, the eigenfunctions of the empty
it(z) Wéllveguideda:eha necessa(rjy evil, for without th?m Weharefnot
) NNy able to model the waveguide as a transmission line. Therefore,
= T(=j0: ) Io(=j0:)e ™V EH 205 (z) the image theory of this paper cannot be applied to the
=1, 26,9; e—j\/{)f——Bzzgé(z) waveguide problem where the cross section is so complicated
00, + €3/ 0% — B2 that the eigenfunctions are not known.
= <—i>_fo{ 24 Jo(§By/ 2% — 22)0(z — 20) IV. JUNCTION OF RECTANGULAR WAVEGUIDES
Iz b+ 4y

Myl SN (=t 2/ N2 As an example, we now consider a situation where a

- — 12 2 Z( ! 2) < “°> small dipole is placed in front of a junction of rectangular
G/ -1\ b+l Z+ %o waveguides (Fig. 5). The source is

c Jon(§By/ 22 — 23)0(z — zo)} . f(f) = @l Lé(x — 20)6(y — y0)6(z — 20) exp (jwt)  (49)

and, hence, for TE modes from (64) in the Appendix we get

2) TM Modes: We may instantly write down solutions cor-
responding to the, line image problem by using the solutions 9~ (7) = e - @l L8(x = 20)dyé(y — y0)8(z = 20)

of the TE problem if the following dualities between TE and — iy - Ul L0y 6(x — 20)6(y — Y0)6(2 — 20). (50)
TM transmission lines are recognized: Unlike the sources considered in the earlier sections, the dipole
Ulz) = I(z) u(z) =i(z) Lec €, c, produces both left- and right-going waves of which the former

gives rise to the reflection image (47)

g (7) = L,La - [a};é(x — 20)3,6(y — o) — yOs
The images we have considered earlier were derived with .
respect to general properties of the transmission line. If they (2 — 0)0(y — yo)} R(j0.)6(z — 20)
represent modal images,,,, the entire image for the reflected R B B B

H_ field is then a sum of these modal TE images: =1 Lu [ 28(z = 20)8y6(y = o) = Wy0:8(x = o)

E. Waveguide Images

by — 1
ZZJ:; D5 ) 0y = )| x [E 5, 8+ %)
£y
#(59:) ZZ G on (D)3 (=) # 8T (-8t 20)

— B(—(z 20 . (51)
_ R(j0.)g(C -7) (@7) (e ”}
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Fig. 7. (a) Rectangular waveguide’s walls can be removed if infinite number

. _ . . of image sources similar to the original one are substituted in the (b) transverse
Fig. 6. The original and the image source (line image part only shown). mirror-image positions.

The source (see Fig. 6) of thecomponent of the reflected manipulations of integrals of Laplace transforms could be quite
H-field is then a combination of: 1) a point source locategdious. But, as we have seen in this paper, Heaviside calculus
atz = wo, y = Yo, z = —#o and is otherwise similar to the gjyes operational expressions for the images immediately and
original source, but the amplitude is modified by the factqfeals naturally with the distributive nature of the sources. A
(62— 41)/(£2 4 £1) and 2) a line source starting from= zo, particularly attractive feature is that Heaviside calculus leads
Y = o, z = —z and extending to the infinity in the negativeiy physically sound images in the sense that the images are
z-direction. The line source has an amplitude variation givgiymbinations of point-like sources that could be called “static,”
by BY(¢2/¢1,—B(z + 20)). existing even wheno — 0, and line sources that could be

In the case of the rectangular guide, there is a nice explalﬂqought of as being “dynamic” additions to the “static” images.
tion for the independence of (51) of the transverse coordinaiger all, intuition shows that time—harmonic images should
z, y—we can picture that in addition to the original imaggjitfer from the time-independent ones, yet the images should

there is an infinite set of images placed in the mirror-imaggsar some resemblance to the images of the static problem.
points in the transverse plane of the guide (Fig. 7). Images in

the transverse plane extend longitudinally to the infinity in a

similar fashion as the original one (51). APPENDIX

TRANSMISSION-LINE MODEL FOR TE/TM MODES

V. CONCLUSION

Solving waveguide discontinuity problems such as the or'?‘é Mode Voltages and Currents

demonstrated here usually involve the construction of theln @ waveguide TE- or TM-mode propagation case, the
Green function for the waveguide. The geometry of th@lectric and magnetic fields can be conveniently expressed
discontinuity has to be built into the Green function in ordakith scalar transverse eigenfunctignand scalar longitudinal

for the Green function to satisfy boundary conditions. WorRigenfunction{2 [5, Ch. 8], and for a single mode’s electric
required to develop the Green function for the simple examp@d magnetic field we have the following relations, where the
presented in this paper might be within reasonable limits, bé@uble mode indiceswn are suppressed:

certainly not for more complicated settings such as scatterers

in the waveguide near the discontinuity. The image-theory e _k_f e e

approach needs only an empty waveguide’'s Green function, Hi(@,y,2) Cjw V() (2) (52)

and the previous problem of forming the Green function 2. 1 . .

satisfying boundary conditions reduces to the case of finding H; = m(vﬂ/} )9:42 (53)

the images. Once the images sources are found with the P = fe — (. X V1 )Qe (54)
= E = (i, .

procedure described in the previous sections, the fields are

immediately obtained by simply taking the convolution of all

sources with the Green function of the empty waveguide.

The practicability of this approach is seen clearly if, fofhe TM case is dual to the previous one, hence,
instance, we are writing a program to calculate fields in 2

waveguide scattering problems. We need write only one simple m _ R om m

subroutine for the Green function no matter the number and B @y, 2) = jwew (2, y)¥" (=) (56)
shape of the scatterers. Now the principal work is to form L(V PO (57)
the image sources, and here the Heaviside calculus may be jwe t #

appl'led. The way Hea\'/|.5|de calcul'us was used in thg previous H=gm= —(i. X Vyp™)Qm, (58)
sections can be classified as a direct-type formulation of the

general image theory. The other class of general image-the . .
formulations can be termed as being of the integral transforﬁrné{W connecting(z) with U(z) or I(z), (52)~(58) appear as
type. An example of the latter category is the exact image N N o
theory (EIT) that used Laplace transform techniques to find B =eU* Hi =h°I* (59)
the images [7]. The disadvantage of the EIT was that the Ef‘ =gnym™ H™=hmm (60)

(55)

Lm
B =
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where mode voltages or currents and mode vectors are C. Circuit Components

. It is seen from (61) that one may define mode impedances
e =1, >< Ve U =Q° h®=-Vu°©

Wi ﬁrnn
1 € — mo_
I :——8 Q° M= —Vﬂ/)m Un = —-——-90.0m Zmn ﬁmn Zmn we | (69)
Jwp Jwe
Fm — X V™ I™(2) = Q™ (61) Equatiqn . (61-), combi_ned vyith (68), finally yield the
transmission-line equations with sources
The mode vectors thus expressed are orthogonal and A+ i Ban ZE I, = O.US + joult,, = (70)
assumed to be normalized over the cross-sectional areaaojmn ¥ B Y US
guide. 12 1
= 0, Irnn+ < ‘Cn )U:;ln = _~—ann(z) = ifnn(z)
Jwp Jwip
B. Sources (71)

The relation between transmission-line soureg€s), i(z)
and currentJ(z) or magnetic current}/(z) remains to be )
found. To this end we start with Helmholtz equations for QU™ 4+ GpZM [ =9 UM 4 <qu+ k: )Irn

= mn-mn
E:

for TE and
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(V2 + ED)E = jou(J + L2 VV D+VxM (63) for TM. Comparing (70) and (71) with (16) and (17), and
(72) and (73) with (18) and (19), one recognizes the following

and proceed by taking thecomponents of the aforementionedOrrespondences:

guantities, since it is possible to express TE or TM fields as coe Lo ok b o/ (74)
functions of longitudinal fields only:
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